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Abstract—The splitting delivery vehicle routing problem with
3-dimensional loading constraints (3L-SDVRP) is an important
and challenging VRP variant. The problem consists of two sub-
problems: the routing and 3D bin packing, each of which is
NP-hard by itself. Compared with CVRP, 3L-SDVRP is much
closer to the reality. There have been many studies on 3L-SDVRP.
However, to our best knowledge, no complete mathematical model
has been formalised with comprehensive loading constraints and
there are still some real-world factors ignored in the existing
studies. In this paper, we consider a more realistic 3L-SDVRP
model with restricted access provided by the 2021 HUAWEI
Logistics Competition, which is different from existing problem
models in two aspects. First, this problem considers the total
travel cost and average loading rate simultaneously. Second, this
problem has additional constraints related to certain special
pickup points. These differences make existing optimisation
approaches not directly applicable. A major contribution of
this paper is the formal mathematical model developed for this
new 3L-SDVRP. In addition, we propose a genetic algorithm
with an efficient fitness evaluation. The proposed algorithm has
been demonstrated to significantly outperform the baseline solver
provided by the competition in solving the problem instances
from the competition and the ones adapted from benchmark
datasets of related problems.

Index Terms—3L-SDVRP, capacitated vehicle routing problem,
3D packing, splitting delivery, combinatorial optimisation

I. INTRODUCTION

Capacitated vehicle routing problem (CVRP) has been re-
searched alone for decades [1]–[6], while the loading con-
straints of a vehicle regarding its capacity (in terms of
weight and size) are not negligible in real-world applica-
tions. Consequently, research around splitting delivery vehicle

This work was supported by the National Natural Science Foundation
of China (Grant No. 61906083), the Guangdong Provincial Key Labo-
ratory (Grant No. 2020B121201001), the Program for Guangdong Intro-
ducing Innovative and Entrepreneurial Teams (Grant No. 2017ZT07X386),
the Guangdong Basic and Applied Basic Research Foundation (Grant No.
2021A1515011830), the Shenzhen Science and Technology Program (Grant
No. KQTD2016112514355531), the Shenzhen Fundamental Research Pro-
gram (Grant No. JCYJ20190809121403553) and the Marsden Fund of New
Zealand Government under Contract VUW1614.

Corresponding author: Xin Yao (xiny@sustech.edu.cn).

routing problems with 3-dimensional loading constraints (3L-
SDVRPs) grows rapidly in recent years [7]–[10]. Although the
problems considered in those works share the same name, they
actually have different objective functions and constraints [7]–
[10]. Existing approaches for solving various 3L-SDVRPs in
literature can be mainly categorised into two groups, loading-
driven and route-driven approaches. The former is composed
by two stages: (i) optimisation of loading plan alone, and then
(ii) optimisation of routes alone while fixing the loading plan
determined by stage (i). The latter iteratively optimises routing
and loading plans in a sequence.

Although compared with CVRP, 3L-SDVRP is much closer
to reality, it still misses some important real-world factors,
making the existing methods not directly applicable to the real-
world applications. In this paper, we focus on a more realistic
3L-SDVRP model that is oriented from a real logistics problem
that Huawei Ltd. encounters, which was also proposed as a
competition in the 11th International Conference on Evolu-
tionary Multi-Criterion Optimization, 2021. This new problem
aims at efficiently allocating multiple types of vehicles to
visit a number of pickup points and collect items located
at the pickup points, while minimising the total travelling
distance and maximising the averaged loading rate (in terms of
weight and volume), and satisfying some routing and loading
constraints. In particular, a special type of pickup point, called
warehouse, is considered. When entering a warehouse, the
vehicle must be empty. In the real world, a warehouse can
refer to a custom point, where no item can be brought in.

Compared with the existing 3L-SDVRP models, the model
considered in our study is different from the following per-
spectives: First, our problem considers both the total travel
cost and average loading rate simultaneously in the objective
function, while the existing models only considered one of
them. Second, our problem has additional constraints related
to certain special pickup points (warehouses with restricted
access). To our best knowledge, no complete mathematical
model has been formalised with all the considered loading
constraints and there are still some real-world factors ignored



in the existing studies.

Fig. 1. Illustrative example of 3L-SDVRP with warehouses considered in this
paper. The warehouses are highlighted with grey background colour. Point
marked by “P” refers to the depot, while the node marked by “D” is the
delivery point (e.g., a port in real life).

For 3L-SDVRPs of large problem size, the evaluation of
a solution quality is computationally expensive. We propose
an objective estimation based solver which estimates the
evaluation values as an alternative of actual solution evaluation
to improve the time efficiency. A vehicle selection strategy
is introduced and embedded so that the advantage of using
multiple vehicle types is exploited.

Our main contributions are as follows: (i) we formulate the
mathematical model for the studied problem (Section III-B),
which has more realistic loading constraints compared to
existing ones and considers the quality of loading and routing
plans simultaneously (detailed in Section III-C). (ii) For better
investigating algorithms for tackling 3L-SDVRP, we generate
a number of 3L-SDVRP benchmark instances based on well-
known benchmarks of related problems. (iii) We propose a
genetic algorithm, equipped with a novel efficient objective
estimation method, and a vehicle selection strategy to optimise
the routing and loading plans. The proposed approach has been
shown to significantly outperform the baseline solver provided
by the competition in solving competition instances and 3L-
SDVRP instances. Besides, the proposed algorithm provides
a solution set that contains several non-dominated solutions
instead of one single solution.

The remainder of the paper is organised as follows. Section
II reviews the related work. We describe the 3L-SDVRP
considered in this work in Section III-A, formulate its mathe-
matical model in Section III-B and discuss its key differences
compared to related problems in Section III-C. Section IV
briefly introduces the instances and baseline solver provided
by the competition. Section V presents the generation of novel
benchmark datasets. Section VI presents our approach and
Section VII presents the comparison between it and baseline
solver on the test instances. Section VIII concludes the paper.

II. RELATED WORK

In this section, we review the related vehicle routing prob-
lems with 3-dimensional loading constraints. Then, existing

approaches for those problems, categorised into loading-driven
and route-driven approaches, are presented.

A. Related Vehicle Routing Problems

Diverse variants of capacitated vehicle routing problems
(CVRPs) have been formulated from real-world applica-
tions [11], among which 3-dimensional loading constraints and
splitting delivery have been considered separately.

Few works have considered simultaneously the splitting
delivery and 3-dimensional loading constraints [7]–[10], [12].
Although the same name (“splitting delivery vehicle routing
problem with 3-dimensional constraints”, 3L-SDVRP) has
been used in those works, the described problems differ from
each other in the objective functions or constraints.

To our best knowledge, Gendreau et al. [13] was the first
to formally introduce the vehicle routing problem with 3-
dimensional loading constraints (3L-CVRP), assuming that the
items located at the same customer points can not be splitted.
This 3L-CVRP, also studied in [14] and [12], assumes that
identical vehicles are used for all routes [13]. A simplified
version of 3L-CVRP by removing constraints such as the
ones regarding supporting area and loading direction was
studied in [15]. In the aforementioned works [7], [12]–[15], no
complete mathematical model of the problems was formulated.
Junqueira et al. [16] formulated a 3L-CVRP model, assuming
that all vehicles have the same capacity, in terms of size and
weight. Moreover, minimising the total travel cost was the
only objective [16]. [17] also assumed identical vehicles and
formulated the problem with two objectives, minimising total
travel cost and maximising the number of items loaded into
the vehicle.

In the work of [7], a real-world problem with more realistic
considerations compared to 3L-CVRP [13], including multiple
vehicle types of different capacity and split delivery, was
introduced. The problem was referred to as “3L-CVRP” in [7],
but the term “3L-SDVRP” [8] fits it better. The 3L-SDVRP
studied by [9] allows loading items from sides of vehicles,
while the other definitions of 3L-SDVRP only allow loading
from the rear door, which significantly affects the loading plan
and the order of item collection. In [8] and [10], two objectives
are considered simultaneously, minimising the sum of total
travel cost and minimising the number of vehicles used. No
one has considered the total travel cost and average loading
rate simultaneously.

B. Related Approaches

Existing approaches for various 3L-SDVRPs can be mainly
categorised into route-driven (e.g., [7]–[9]) and loading-driven
(e.g., [10]) approaches. An hybrid algorithm was designed in
[12] for solving 3L-CVRPs, in which a tree search algorithm
(TSA) was used to optimise routing plans and a subordinate
TSA (TRSA) was used to load items to be collected on
each obtained routes. In the work of [7], the routing and
loading plans are iteratively optimised with local search and a
deepest-bottom-left-fill packing (DBLP) heuristic. In the work
of [8], a data-driven three-Layer search algorithm (DTSA) was



designed, in which two estimation of distribution algorithms
were used to optimise routes and split items at collection points
and a prediction model was trained to evaluate loading plans.
Bortfeldt and Yi [10] designed a layer-based loading heuristic.
The loading plan is optimised with a genetic algorithm, and
then the routing plan is optimised with local search [10]. Meta-
heuristics and heuristics have been proven to be effective in
solving similar problems.

III. 3L-SDVRP

In this section, we summarise the problem and constraints,
formulate its mathematical model, and clarify the differences
between our model and existing ones.

A. Problem Description

The problem aims at efficiently allocating multiple types
of vehicles to visit a number of pickup points (including
warehouses with restricted access) and collect items located
at the pickup points, while minimising the total travelling
distance of vehicles used and maximising the averaged loading
rate of vehicles, in terms of weight and volume. At each pickup
point, there could be more than one item to be collected.
The height, width, length and weight of any item is known.
Each vehicle type is determined by a height, width, depth and
capacity. All items and vehicles are of rectangular shape. Fig.
1 illustrates an example of our problem.

We categorised the constraints into routing and loading
ones, summarised as follows.

a) Routing constraints:
RC1: each vehicle should depart from a single depot and deliver

the collected items to a single destination that is different
from the depot;

RC2: each vehicle can visit each pickup point at most once;
RC3: when entering a warehouse, the vehicle must be empty;
RC4: each item should be collected once and only once.

b) Loading constraints: At any time of the trip, inside
any vehicle:
LC1: the total weight of its loading should not exceed its

capacity;
LC2: the total size of its loading should not exceed its size (i.e.,

length, width and height);
LC3: items cannot overlap each other in any dimension;
LC4: when loading any item, at least 80% bottom area should

be supported by previously loaded items;
LC5: for any item, it should not be placed behind, looking from

the rear of a vehicle to its head, collected from any pickup
point that was visited before its pickup point;

LC6: items cannot be re-arranged after being loaded;
LC7: when placing an item, it can only be rotated horizontally

with 0 or 90 degrees. Its vertical orientation is fixed.

B. Problem Formulation

1) Notations:
P: set of pickup points.
Pw: set of special pickup points (warehouses), Pw ⊂ P .
N : number of pickup points, i.e., N = |P|.

p0: start point.
pN+1: delivery (end) point.
mk: number of items at pickup point pk, ∀k ∈ {1, . . . , N}.
Tk = {tk,1, tk,2, . . . , tk,mk

}: set of items at pk, ∀k ∈
{1, . . . , N}.
T : set of all items, T = ∪Nk=1Tk.
K: number of vehicle types.
Wt(·): width of a given item.
Wv(·): width of a given vehicle.
Ht(·): height of a given item.
Hv(·): height of a given vehicle.
Lt(·): length of a given item.
Lv(·): length of a given vehicle.
Ct(·): weight of a given item.
Cv(·): weight capacity of a given vehicle.
τ(·): pickup point of a given item, 1 ≤ τ(·) ≤ N .
d(pi, pj): distance between any two pickup points pi, pj ∈ P .
It’s notable that d(pi, pi) = 0 (∀i ∈ {1, . . . , N}) and d(pi, pj)
does not necessarily equal to d(pj , pi) due to single lanes
(∀i, j ∈ {1, . . . , N}).
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Fig. 2. Illustration of the coordinate system (a, b and c) for items with origin
at the center of a truck. The coordinates are in parallel with the truck’s width,
length and height, respectively.

2) Solution representation: A solution is represented by a
number of routes. Each route is composed of its collected
items, the type of vehicle used and the loading plan. Assuming
a solution of n routes, for each route ri (∀i ∈ {1, 2, . . . , n}),
its aforementioned components are as follows:

a) Collected items: Let li denote the number of items to
be collected on this route. (xi,1, xi,2, . . . , xi,li) represents the
collected item, ∀j ∈ {1, 2, . . . , li}, xi,j ∈ T .

b) Type of vehicle used: For each route ri, a vehicle type
vi is specified. Consequently, its weight capacity, Cv(vi), and
size, Wv(vi), Lv(vi) and Hv(vi), are determined.

c) Loading plan: A loading plan is represented by an
array of 4-tuples, the length of which is the number of
collected items, li. For each collected item xi,j , the 4-tuple
〈ai,j , bi,j , ci,j , θi,j〉 determines its geometric center location
and its horizontal direction. The geometric center of vi is
set as its origin, the coordinates of ai,j , bi,j and ci,j are in
parallel with vi’s width, depth and height, respectively (cf.
Figure 2). According to LC5, an item can be placed in two
horizontal directions only considering the symmetry relation.
The horizontal direction θi,j is 1 if the width of item xi,j is
in parallel with the width of vehicle; otherwise 0.

3) Mathematical model: Two objectives are considered,
maximising the averaged loading rate of all vehicles and min-
imising the total routing distance. We formalise the objectives



max fl(x) =
1

n

n∑
i=1

max


∑li

j=1Wt(xi,j) ∗ Lt(xi,j) ∗Ht(xi,j)

Wv(vi) ∗ Lv(vi) ∗Hv(vi)
,

∑li
j=1 Ct(xi,j)

Cv(vi)

 , (1)

min fr(x) =
n∑

i=1

(
d
(
p0, τ(xi,1)

)
+ d
(
τ(xi,li

), pN+1

)
+

li−1∑
j=1

d
(
τ(xi,j), τ(xi,j+1)

))
, (2)

where xi,j is the jth item of the ith route, which is served by truck vi.

s.t.

∀i ∈ {1, . . . , n}, ∀1 ≤ z ≤ o ≤ li, if τ(xi,z) = τ(xi,o), then for z < j < o, τ(xi,j) = τ(xi,z), (3)

∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . , li − 1}, if τ(xi,j) 6∈ Pw, then τ(xi,j+1) 6∈ Pw, (4)

∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . , li}, if τ(xi,j) ∈ Pw, then τ(xi,m) = τ(xi,j) ∀m ∈ {1, . . . , j − 1}, (5)

∀i ∈ {1, . . . , n}, ∀j, j′ ∈ {1, . . . , li}, if j 6= j
′
, then xi,j 6= xi,j′ , (6)

∪n
i=1Set(ri) = T , (7)

∀i, i′ ∈ {1, . . . , n} and i 6= i
′
, Set(ri) ∩ Set(ri′ ) = ∅, (8)

∀i ∈ {1, . . . , n},
li∑

j=1

C(xi,j) ≤ C(vi), (9)

∀i ∈ {1, . . . , n}, ∀j ∈ {1, . . . , li},
Wv(vi)− ΦW (xi,j)

2
≥ ai,j ≥ −

Wv(vi)− ΦW (xi,j)

2
,

Lv(vi)− ΦL(xi,j)

2
≥ bi,j ≥ −

Lv(vi)− ΦL(xi,j)

2
,
Hv(vi)−Ht(xi,j)

2
≥ ci,j ≥ −

Hv(vi)−Ht(xi,j)

2
, (10)

∀i ∈ {1, . . . , n}, ∀j, j′ ∈ {1, . . . , li} and j 6= j
′
,

|ai,j − ai,j′ | ≥
ΦW (xi,j) + ΦW (xi,j′ )

2
or |bi,j − bi,j′ | ≥

ΦL(xi,j) + ΦL(xi,j′ )

2
or |ci,j − ci,j′ | ≥

Ht(xi,j) +Ht(xi,j′ )

2
, (11)

∀i ∈ {1, . . . , n}, ∀j ∈ SnotBottomItems =

{
j|j ∈ {1, . . . , li}, ci,j >

Ht(xi,j)

2
−
Hv(vi)

2

}
,

let Sj =

{
j
′|1 ≤ j′ < j, ci,j − ci,j′ =

Ht(xi,j) +Ht(xi,j′ )

2
, |ai,j − ai,j′ | <

ΦW (xi,j) + ΦW (xi,j′ )

2
, |bi,j − bi,j′ | <

ΦL(xi,j) + ΦL(xi,j′ )

2

}
,

then
∑

j′∈Sj

((ΦW (xi,j) + ΦW (xi,j′ )

2
− |ai,j − ai,j′ |

)
∗
(ΦL(xi,j) + ΦL(xi,j′ )

2
− |bi,j − bi,j′ |

))
≥ 0.8 ∗Wt(xi,j) ∗ Lt(xi,j), (12)

∀i ∈ {1, . . . , n}, ∀1 ≤ j < j
′ ≤ li, if τ(xi,j) 6= τ(xi,j′ ) and |ai,j′ − ai,j | <

ΦW (xi,j′ ) + ΦW (xi,j)

2
,

then bi,j′ − bi,j ≥
ΦL(xi,j′ ) + ΦL(xi,j)

2
or |ci,j′ − ci,j | ≥

Ht(xi,j′ ) +Ht(xi,j)

2
, (13)

where Set(r) denotes the set of all items in route r, and

ΦW (xi,j) = θi,j ∗Wt(xi,j) + (1− θi,j) ∗ Lt(xi,j), (14)

ΦL(xi,j) = θi,j ∗ Lt(xi,j) + (1− θi,j) ∗Wt(xi,j). (15)

Fig. 3. Mathematical model of the problem considered in this work.

and constraints in Fig. 3. The formulation of fr (Eq. (2) in Fig.
3) implies the the routing constraint RC1. RC2 is guaranteed
by Eq. (3). Eqs. (4) and (5) ensure RC3. RC4 is guaranteed
by Eqs. (6), (7) and (8). Eqs. (9), (10), (11) and (12) ensure
the loading constraints LC1, LC2, LC3 and LC4, respectively.
Eq. (13) ensures LC5 and LC6. LC7 is implicitly implied in
the solution representation and formulation of objectives.

C. Key Differences to Related Problems

A number of studies have investigated into various problems
called “splitting delivery vehicle routing problem with 3-
dimensional constraints” [7]–[10], however, those problems
are actually different from our problem in terms of objective
functions or detailed loading constraints. The key differences
are as follows. No existing study has considered the total travel
cost and average loading rate simultaneously (c.f. Eqs. (1) and
(2)). No one has ever considered special types of pickup points,

e.g., warehouses with restricted access in this work (c.f. Eqs.
(4), (5) and RC3). In addition, the starting point and delivery
point (destination) are distinct in our problem while the other
3L-SDVRPs assume the identical starting and delivery point.
The differences originate from some widely existed real-world
scenario: the collect-to-centre scenario, in which the parking
lot of vehicles is the starting point and the collecting centre
(e.g., train stations or airports) is the delivery point. In each
instance, vehicles start from the parking lot, collect and load
boxes from customers at each pickup point and delivery them
to the collecting centre. A warehouse with restricted access is
a bonded area, which does not allow any non-empty vehicle to
enter. The total distance and loading rate are two main factors
that determine the price of transport contractor who provides
different types of vehicles. The problem considered in this
work and its formulation reflect the aforementioned scenario.



IV. COMPETITION INSTANCES AND BASELINE SOLVER

As case study, we use the problem instances and solver pro-
vided by the 2021 HUAWEI Logistics Competition organised
at the 11th International Conference on Evolutionary Multi-
Criterion Optimization 1 as test instances and baseline solver,
respectively.

A. Problem instances

250 instances were provided by the competition. However,
212 instances have no warehouse or only have one single type
of vehicle. Therefore, only the 38 instances that meet our
problem’s definition are studied in this paper. Those instances
are renamed as CI-1 to CI-38 and saved in JSON format2.

B. Baseline solver

A greedy solver provided by the competition is used as a
baseline in our work. For each instance, the baseline solver
assumes that each vehicle visits the pickup points in the order
as listed in the JSON file. The vehicle with the biggest size
is used to collect items, starting from the depot, until being
fulfilled (size or weight) or all items of the visited pickup point
are collected. If a vehicle is fulfilled, it goes directly to the
destination. Then, another vehicle with the biggest size is used
to continue collecting. The above steps are repeated until all
pickup points are served. The packing policy of this baseline
solver is also greedy. At each visited pickup point p, for all
the items of the same size at p, all possible assembled blocks
of those items are computed. The resulted block with the cross
section the most closed to the one of the vehicle is used. More
details can be found on the competition website [18].

Besides, a Java program for checking solutions’ feasibility,
a Python program for calculating fl, Eq. (1), and a tool for
visualising loading plans are also provided by the competition.
Fig. 7 gives examples of visualising loading plans.

V. INSTANCE GENERATION

Besides the competition instances, we also generate a num-
ber of 3L-SDVRP instances based on some well-known bench-
mark instances of related problems for better studying 3L-
SDVRP and evaluating algorithms for tackling the problem.

Specifically, we find two commonly used datasets which are
closest to our problem: Shanghai (Sha01 - Sha15) instances
from [10] and SD-CSS instances (SD-CSS1 - SD-CSS13)
from [7]. Table I summarises the differences between those
instances and our problem’s definition.

The instances are adapted to our problem as follows. (i)
In each instance, a randomly selected pickup point is set
as a warehouse. (ii) For each dataset (Shanghai and SD-
CSS), vehicle types from all the instances are collected as
a set of different vehicles and reassigned into instances of the
corresponding data set. Notably, if two vehicle types have no

1https://emo2021.org/index.php/competition/ or https://www.noahlab.com.
hk/logistics-ranking/#/home/index.

2Instances available at https://github.com/PeiJY/3L-SDVRP-instances. By
default, warehouses are listed before regular pickup points without restricted
access.

significant difference (defined as the sum of differences on
wight, height, length and capacity is smaller than 5%), then
we randomly omit one. (iii) In each instance, a new point is
introduced as the delivery point. Its distance to any other point
is randomly generated in the range of the highest and lowest
distances between any two points in this instance.

Instances adapted from datasets SD-CSS and Shanghai are
named as w-SD-CSS and w-Sha2, respectively.

Algorithm 1: Routing distance estimation. Notations
used for describing the problem were already defined
in Section III-B1.

Input: I , problem instance
Input: ζ, permutation of pickup points

1 N ← number of pickup points of I
2 M← normalised distance matrix between any pickup points of I

(The normalised distance between any points i and j is
(d(i, j)−minD)/(maxD −minD) with
minD = min d(i′, j′) and maxD = max d(i′, j′) for all
i′ 6= j′)

3 V olList← list of the total volume of items at each pickup point of
I

4 p0 ← starting point of I
5 pN+1 ← delivery point of I
6 maxV ol← the volume of biggest vehicle in I
7 distList← an empty list to save distance of routes
8 v ← initialise the load of residual box to 0
9 D ←M(p0, ζ1)

10 for i ∈ {1, . . . , N} do
11 v ← v + V olList[ζi]
12 if v > maxV ol then
13 ratio← v

maxV ol
14 while ratio > 1 do
15 Add D +M(ζi, pN+1) to the end of distList
16 ratio← ratio− 1
17 v ← v −maxV ol
18 D =M(p0, ζi)

19 if i > 1 then
20 D ← D +M(ζi−1, ζi)

21 Add D +M(ζN , pN+1) to the end of distList
22 f̃r = mean(distList)

23 return Estimated routing distance f̃r

VI. PROPOSED APPROACH: GENETIC SOLVER WITH
OBJECTIVE ESTIMATION

We propose a genetic algorithm with a new efficient routing
distance estimation and a vehicle selection strategy to optimise
3L-SDVRP.

A. Estimation of Routing Distance

The baseline solver uses a constant order, determined by
the instance description file, to visit pickup points, which
leads to deterministic and probably sub-optimal solutions.
Optimising permutations of pickup points by meta-heuristics
will lead to better solutions. However, optimising with the
actual evaluation as fitness will cost significant time, as the
feasibility checking and the evaluation of a solution is complex
and time-consuming. For reference, it costs approximately
3.2s to evaluate a solution for w-SD-CSS6 with the provided
evaluation program on a machine with an Intel i7-9700K CPU
and 64G RAM. If at least 10, 000 solution evaluations are



TABLE I
DIFFERENCES BETWEEN OUR PROBLEM AND TWO WELL-KNOWN BENCHMARKS OF RELATED PROBLEMS: Shanghai AND SD-CSS.

Vehicle type Point type

Our problem Multiple types. Regular pickup points and special pickup points with restricted access.
Distinct starting and delivery points.

SD-CSS Two types in SD-CSS5, SD-CSS7, SD-CSS8, SD-CSS11. Regular pickup points only.
One type in the other instances. An identical starting and delivery point.

Shanghai One type. Regular pickup points only.
An identical starting and delivery point.

required during search to obtain a satisfactory solution (which
is often the case in optimising vehicle routing problems), it
takes more than 8 hours if considering w-SD-CSS6.

To reduce the time consumption, we design a routing dis-
tance estimation method as an alternative of actual evaluation
without considering the solution feasibility during optimisa-
tion. Algorithm 1 details how the estimated routing distance,
f̃r(ζ), is calculated, where ζ is a permutation of pickup points.

B. θ-greedy Policy for Vehicle Selection

Multiple types of vehicles with different size and capacity
are available to load items. The selection of vehicle type for
each route directly affects the loading structure and the two
objective values. To make the best use of the diverse vehicle
types, we design a dynamic vehicle selection strategy, named
as θ-greedy policy, in Algorithm 2 which selects a vehicle
type for each route based on the volume of unloaded items,
denoted as resBoxV olume, and the estimated loading rate of
each vehicle type, f̃r.

Algorithm 2: θ-greedy policy for vehicle selection.
Notations used for describing the problem were defined
in Section III-B1.

Input: I , problem instance
Input: resBoxV olume, volume of unloaded items
Input: γ, tight coefficient
Input: θ, threshold of estimated loading rate

1 vehicleList← vehicle type list of I
2 K ← |vehicleList|
3 rl← an empty list to save the predicted loading rates of vehicles
4 n← 0 // vehicle counter
5 foreach v ∈ vehicleList do
6 f̂l ← resBoxV olume

Wv(v)∗Hv(v)∗Lv(v)∗γ
7 rl.add(f̂l)

8 if f̂l > θ then
9 n++

10 if n
K
> random(0, 1) then

11 v ← the vehicle with maximum volume in I

12 else
13 choose v with Roulette Wheel Selection based on softmax(rl)

14 return Estimated best vehicle v

C. Genetic Solver with Objective Estimation

A solution is represented by a sequence consisting of indices
of all pickup points, which is the order of pickup points to be
visited. We use a genetic algorithm with our routing distance

estimation f̂r as fitness function for optimising the routes and
the greedy packing policy provided by the competition for
loading items into vehicles that are selected by our θ-greedy
policy. For a further simplification, when encoding a solution,
warehouses are excluded. After optimisation, the warehouses
are re-inserted after the starting point of routes in a greedy
way when actually evaluating a solution. The population is
initialised uniformly at random. Rank-based parent selection,
order-based crossover and inverse mutation are used. At each
generation, the top ranked ones of the current population and
offspring are used as the population of next generation.

VII. EXPERIMENTAL STUDY AND DISCUSSION

Our proposed approach is compared to the baseline solver
provided by the competition. 30 independent optimisation
trials have been performed on each of the problem instances
as described in Section V. The population size, mutation rate
and maximum generation number are set as 50, 0.5 and 10N ,
respectively, with N the number of pickup points.

At the end of each optimisation trial, the final population
is validated by the constraint checking program provided by
the competition and evaluated by real objective functions, Eqs.
(1) and (2). The two best solutions in terms of each objective
function among the last population are recorded and denoted
as ζ∗r and ζ∗l , respectively. All experiments are taken on the
same machine with an Intel i7-9700K CPU and 64G RAM.

Figs. 5 and 6 compare solutions for each instance found
by our approach and the baseline solver, in terms of the
actual objective values, Eqs. (2) and (1), respectively. Reading
instructions of Fig. 5 are as follows. ζ∗i is set as the solution
with shortest routing distance in the final population of the
ith optimisation trial. Given a solution ζ, fr(ζ) and fl(ζ)
are its real objective evaluations for routing and loading
plans, Eqs. (2) and (1), respectively. fBr and fBl refer to the
objective values of solutions found by the baseline solver.
The top of Fig. 5 plots, for each instance,

1
30

∑30
i=1 fl(ζ

∗
i )−fB

l

fB
l

and fB
r − 1

30

∑30
i=1 fr(ζ∗i )

fB
r

. The bottom one plots fB
r −fr(ζ∗best)

fB
r

and

the corresponding fl(ζ
∗
best)−f

B
l

fB
l

, with best = argmin
1≤i≤30

fr(ζ
∗
i ).

A positive y-value in Fig. 5 means that the average of our
solutions or the best over the 30 trials, respectively, is better
than the baseline on the instance indicated by x-axis. Reading
instructions of Fig. 6 are the same as Fig. 5 with ζ∗i set as the
solution with highest loading rate in the final population.



Fig. 4. Averaged actual routing distance and averaged estimated routing objective values of population during optimisation trials of instances SD-CSS10
(left), SD-CSS11 (middle) and SD-CSS4 (right). The estimated values have the similar variation tendency and decreasing trend as the actual distances.

Table II summarises the number of instances of which the
averaged or the best of our solutions, in terms of route distance
or loading rate, is better than the baseline on both objectives
(4th column), neither (5th column) or one of the objectives
only (6th and 7th columns), i.e., the solution found by our
solver and the one found by baseline solver are non-dominated.

Table II and Figs. 5 and 6 clearly show that our genetic
algorithm with objective estimation significantly outperforms
the baseline solver. Among 66 problem instances, considering
the average performance, the solution ζ∗r (with shortest routing
distance) found by our solver dominates the baseline on
48 instances, while our solution and the baseline are non-
dominated on 18 instances; the solution ζ∗l (with highest
loading rate) found by our solver dominates the baseline on
59 instances on average, while our solution and the baseline
are non-dominated on 7 instances.

To illustrate the effectiveness of our objective estimation
method, Fig. 4 demonstrates the averaged estimated values
of solutions and the averaged true objective values of same
solutions during the optimisation trails of 3 randomly selected
instances. The estimation is informative as the estimated values
and real objective values have the similar variation tendency
and decreasing trend.

Fig. 7 gives an example of solutions for instance w-Sha02.
In this example, the loading rate and routing distance of our
solution obtained in an arbitrarily chosen optimisation trial are
0.4533 and 726.7, respectively, while the baseline’s solution
has fBl = 0.3022 and fBr = 1125.1. The actual routes of
visiting pickup points of our solution are (7, 8, 2, 6, 1) and
(5, 3, 4), while the ones of the baseline’s solution are (7, 1, 2),
(2, 3, 4, 5, 6) and (6, 8). In the solution found by the baseline
solver, there are 5 items that can not be loaded into the first
two vehicles, therefore one more vehicle is needed. A better
visiting order of points is found by our algorithm, which leads
to a better loading strategy with only two occupied vehicles.
Our routing plan not only has significantly shorter travelling
distance and higher loading rate compared to the solution
found by the baseline solver, but also is more balanced.

VIII. CONCLUSION

In this paper, we focus on a realistic splitting delivery
vehicle routing problems with 3-dimensional loading con-

TABLE II
DOMINANCE RELATIONSHIP OF SOLUTIONS FOUND BY OUR SOLVER

COMPARED TO THE ONES FOUND BY BASELINE SOLVER.

Dataset Dominate Be dominated Non-dominated
Better on fl and fr Neither Only fl Only fr

w-SD-CSS
ζ∗r

Avg. 9 0 0 4
Best 13 0 0 0

ζ∗l
Avg. 13 0 0 0
Best 13 0 0 0

w-Sha
ζ∗r

Avg. 14 0 0 1
Best 15 0 0 0

ζ∗l
Avg. 14 0 1 0
Best 15 0 0 0

CI
ζ∗r

Avg. 25 0 2 11
Best 30 0 0 8

ζ∗l
Avg. 32 0 6 0
Best 37 0 1 0

straints (3L-SDVRP) and special pickup points (warehouse
with restricted access) which considers the total travelling
distance and the averaged loading rate (in terms of weight and
volume) while satisfying some routing and loading constraints.
The studied problem comes from the 2021 HUAWEI Logistics
Competition and has more realistic constraints compared to
existing 3L-SDVRP models. In this work, we first formulate its
complete mathematical model with all the loading constraints
considered, then we propose an objective estimation method
to efficiently estimate the routing distance. The proposed
method is used as surrogate objective evaluations in a genetic
algorithm for optimising the problem. Besides the competition
instances, more instances are generating based on well-known
benchmark sets of related problems. Our proposed approach
shows superior performance compared to the competition
baseline solver on problem instances provided in the 2021
HUAWEI Logistics Competition benchmark and the novel
instances.

As future work, we will investigate in efficient approaches
for tackling large-scale 3L-SDVRP instances, in particular,
designing heuristics for assembling items into blocks for re-
ducing the dimensionality of problem. Studying more realistic
3L-SDVRPs by considering uncertainties in real-world routing
scenarios is another direction [19], [20].
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Fig. 5. Comparing our solutions with shortest routing distance in the final population of each optimisation trial to the solutions found by the baseline solver.
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Fig. 6. Comparing our solutions with highest loading rate in the final population of each optimisation trial to the solutions found by the baseline solver.

Fig. 7. Screenshots of solution visualisation for w-Sha02. Top: our solution composed by two routes. Bottom: baseline solution composed by three routes.
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