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Abstract—Computational intelligence methods have been
widely applied to model-based engine calibration. Engine cal-
ibration based on computational fluid dynamics (CFD) calcu-
lations is time-consuming and constrained. In this paper, we
model a real-world aero-engine calibration problem with many
parameters as an expensive optimisation problem with hidden
constraints. Two surrogate-assisted meta-heuristic frameworks
using offline and online strategies are proposed in this paper for
efficient aero-engine calibration. A surrogate model is trained
on engine parameter settings, that lead to valid and invalid
CFD calculations, to predict the feasibility of new parameter
settings. Parameter settings that are predicted as infeasible by the
surrogate model will be eliminated for evaluation during search
to reduce the time wasted on infeasible solutions. To validate our
approaches, instantiation of the offline and online frameworks
are implemented with a neural network model and a self-
adaptive particle swarm optimisation and verified on calibrating
a real aero-engine model. Both the proposed offline and online
frameworks significantly speed up the calibration in terms of real-
time performance compared with the approach without using
a surrogate model. The surrogate model not only improves
the calibration efficiency but also is capable of indicating the
importance of parameters to guide the calibration order.

Index Terms—Engine calibration, Hidden constrained optimi-
sation, Expensive optimisation, Surrogate model.

I. INTRODUCTION

Engine calibration is an essential problem in the engine
design. It aims to adjust a group of parameters to ensure
the performance of an engine [1] with the help of an engine
simulator. An engine simulator is used which takes a parameter
setting as input and outputs a number of values to indicate
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the quality and feasibility1 of the input setting. Typically, the
calibration process can be modelled as a constrained black-box
optimisation problem. The meta-heuristic algorithms, such as
evolutionary algorithms [2], are very suitable for such kind
of problems. However, the simulation process of performing
the parameters with a given engine model to evaluate parame-
ters’ quality is usually time-consuming. Therefore, the engine
calibration is a typical expensive constrained optimisation
problem.

Plenty of works have been published in the literature to
solve expensive constrained problems. To obtain a better solu-
tion given limited computational resources, surrogate models
are usually used to approximate the actual fitness function
and assist meta-heuristics for optimising expensive problems
[3]–[5]. The expensive evaluation process usually outputs both
the objective value and the value for penalising constraints
violation for one simulation [6]. Building one or two models
to approximate the objective function and constraints penalty
function together or separately, respectively, have been inves-
tigated in the literature. For example, Wang et al. [7] used
a regression neural network to approximate the objective and
constraints penalty simultaneously. Runarsson [8] constructed
two surrogate models to approximate separately the objective
and constraints penalty.

However, most researches focused on explicitly constrained
problems in which the actual constraints violation values
are provided explicitly [9]. Existing approaches for explic-
itly constrained problems, such as penalty functions [10],
stochastic ranking [8] and feasibility rules [11], have been
very mature and shown to be effective. Few works considered
hidden constrained problems, in which only a binary value
is provided to indicate the feasibility of a solution [12]. Lee
et al. [13] combined expected improvements strategy and the
predicted probability of being a valid solution for expensive
hidden constrained problem. They chose one sample solution,

1“Feasibility” here means if the computational fluid dynamics (CFD)
calculations performed by the engine simulator converge given the input
engine parameter values. If not, then the parameter values are considered
infeasible and cannot be used in the real engine.



which maximises the value of expected improvements and
the predicted probability of being a valid solution, for actual
simulation [13]. It is efficient when handling low-dimensional
problems but hard to handle well median- or high-dimensional
problems. Müller and Day [14] constructed an approximate
model for the objective function and the hidden constraints
using a radial basis function (RBF) surrogate model. The
frequent updates of both the objective’s surrogate model and
the constraints’ model also lead to high computational cost.
Hence, it is more suitable for tackling highly costly problems
of which each simulation takes hours or even longer.

Fig. 1: Schematic diagram of the engine studied in this work.
Image edited from Fig. 2 of [15] with authors’ permission.

In this paper, we model a real aero-engine calibration prob-
lem [15] (illustrated in Fig. 1) as a computationally expensive
problem. This real aero-engine has 27 input parameters to
be calibrated simultaneously, and the simulation time varies
between several or dozens of seconds for different parameter
settings due to the CFD calculations. Given a parameter
setting, the engine simulation outputs a binary value to indicate
its feasibility and the performance metrics returned by CFD
calculations. A general formulation of such hidden constrained
optimisation problem is as follows:

Min f(x)

Subject to g(x) = 1, g(x) ∈ {0, 1}.
(1)

Since only the violation of constraints is determined by g(x)
and a binary value is returned, it is impossible to build a
regression model for predicting the penalty functions. Thus,
determining a solution’s feasibility is intuitively regarded as a
binary classification problem. We employ a surrogate model,
i.e., classification model, to help pre-select potentially feasible
solutions for the expensive aero-engine calibration problem
studied in this paper. The contributions of this paper are as
follows.
• We model a real aero-engine calibration problem as

a computationally expensive problem with hidden con-
straints that the costly simulation process only provides
a binary value to indicate parameters’ feasibility rather
than the quantified penalty value of constraints violation.

• For a such expensive problem with hidden constraints,
we propose two efficient online and offline frameworks

combining surrogate model and meta-heuristics to tackle
the expensive constraints and reduce the computational
cost. More specifically, a classification model is con-
structed either offline or online to predict and pre-select
possibly feasible solutions as candidate solutions for a
meta-heuristic algorithm.

– In the offline framework, an offline surrogate is
trained before the optimisation process with more
sampling data and then used during the whole opti-
misation process without being further updated.

– The online framework maintains an archive of eval-
uated samples during the optimisation process and
updates the surrogate model once its accuracy is not
satisfied.

• The surrogate model enhances the performance of the
meta-heuristic algorithm for automated calibration, which
is demonstrated in our empirical studies on calibrating a
real aero-engine model. Moreover, it helps human engi-
neers further analyse the importance of each parameter
to the performance of aero-engine.

The remainder of this paper is organised as follows. Sec-
tion II introduces the real aero-engine calibration problem
considered in this work. Section III details our proposed
frameworks. Section IV presents the empirical studies and
Section V concludes.

II. A REAL AERO-ENGINE CALIBRATION PROBLEM

In this paper, we study a real aero-engine calibration
problem [15]. Given an engine model, the goal is to min-
imise the difference between its performance and its theoret-
ically optimal performance at several given operation points
s1, s2, . . . , sk by adjusting a set of parameters, i.e., a physical
setting in the engine model.

Human engineers usually repeatedly and manually tune a
parameter setting at several operation points in a sequential
manner as illustrated in Fig. 2, while computational methods
allow to consider the performance at several given operation
points simultaneously. Therefore, given d parameters to be
adjusted simultaneously, donated as x = {x1, .., xd}, a number
of m numerical measurements of its performance at a opera-
tion point s, denoted as y = {y1,s, ..., ym,s}, can be obtained
by a computational model which performs the computational
fluid dynamics (CFD) calculations, provided by human ex-
perts. The desired values of the measurements are denoted
as y∗ = {y∗1,s, ..., y∗m,s}. The quality of an engine parameter
setting x is usually evaluated with the root-mean-square error
(RMSE) between the actual values of measurements to their
desired values. The objective function f(x) of this aero-engine
calibration problem, i.e. RMSE, is formulated as

f(x) =

√√√√ 1

k ∗m

k∑
j=1

m∑
i=1

(
Simulate(x, sj)− y∗i,sj

y∗i,sj

)2

(2)

where y∗i,sj denotes to the target value of the ith measurement
of the optimal engine at operation point sj and k = 33, m =



Fig. 2: Manual engine calibration process. Image reproduced
from Fig. 1 of [15] with authors’ permission. An accept-
able parameter setting x should ensure measurement errors
within certain threshold at several given operation points
s1, s2, . . . , sk.

15 in this aero-engine calibration problem. Simulate(x, sj)
represents the simulation process of computational engine
model on input x and operation point sj . On the other hand,
the feasibility of an input x, i.e. g(x), is also determined by
Simulate(x, sj).

Based on human knowledge, there are some phenomena in
engine design that are unformulated but significantly affect
an engine’s performance. The computational model includes
those phenomena as an unformulated constraint. The output of
this model is a set of numerical measurements that describe the
engine’s performance, y together with a binary indicator of the
feasibility of the input parameter setting x. The feasibility can
be obtained only when a simulation is over. A simulation of the
computational model is usually time-consuming. Moreover,
determining an infeasible input parameter setting sometimes
costs much more time than determining a feasible one. The
main reason is that a parameter is determined infeasible by
the computational model if the CFD calculations performed
to simulate the setting diverge or do not converge to a
certain level after certain time or a number of iterations (i.e.,
maximum budget of CFD calculations), while simulating a
feasible parameter setting will lead to a convergence before
using up the budget. Depending on the engine, the number
of parameters to be calibrated and the maximum budget or
desired precision of CFD calculations, the time cost of deter-
mining an infeasible parameters varies from several seconds
to hours. For reference, according to our experimental tests,
it costs on average 0.73 second in our experimental platform
(Windows10 with Intel Core i7-8700CPU@3.2GHz) to obtain
the performance measurements on our aero-engine model if

the input parameter setting is feasible. However, the simulation
time varies from 1 second to 6 seconds if the input parameter
setting is infeasible.

Additionally, an engine should be calibrated under several
different operation points. In other words, an identical param-
eter setting should satisfy different performance requirements
under different testing scenarios, thus different y∗’s, at the
same time. Therefore, this engine calibration problem can be
viewed as an expensive optimisation problem when consider-
ing dozens of operation points.

III. SURROGATE-ASSISTED ENGINE CALIBRATION
FRAMEWORK

Meta-heuristics have been applied to automatically cali-
brate engines, however the feasibility of parameter settings
were rarely taken into account [1], [16]–[22]. As mentioned
in Section II, sampling infeasible solutions (i.e., parameter
settings) is likely to consume much more computational cost
which significantly reduces the calibration efficacy. The op-
timisation cannot benefit from infeasible solutions because
hidden constraints cannot provide an explicit degree of con-
straints violation. The calibration efficacy would be improved
by eliminating infeasible solutions before the actual simula-
tions. Therefore, we propose two surrogate-assisted engine
calibration frameworks, including an offline framework and
an online one, in which a classification surrogate model is
constructed based on sampled feasible and infeasible solutions
to predict whether a new input solution is feasible or not. The
offline framework only constructs one surrogate model before
the calibration starts, while the online framework updates
the surrogate model during the calibration process. In both
frameworks, we adopt an extreme barrier approach [23], which
sets a penalty value to an infeasible solution as its fitness. The
details of the offline and online frameworks are described in
Sections III-A and III-B, respectively.

A. Offline surrogate-assisted engine calibration framework

The offline framework (Algorithm 1) uses a meta-heuristic
algorithm A, such as an evolutionary algorithm (EA) to search
for optimal engine parameter setting and a surrogate model, ĝ,
constructed with a set of offline collected samples to predict
the feasibility of solutions generated during optimisation.
The surrogate model remains unchanged during the whole
optimisation process.

As shown in Algorithm 1, first, an initial sample set (e.g.,
a population in EA) P is collected by Latin Hypercube
Sampling (LHS), which aims at collecting samples distributed
as uniformly as possible. These samples (individuals) are then
evaluated by the actual simulator to obtain their quality and
feasibility. Based on those evaluated samples, a classification
surrogate model ĝ is constructed. In the main loop of Algo-
rithm 1, the algorithm A generates a new sample set P ′, the
feasibility of which will be predicted by the surrogate model
ĝ. For each sample in P ′, if it is predicted as feasible by
ĝ, then it will be evaluated by the actual simulator to get
its actual quality (or fitness) and actual feasibility; otherwise



its fitness is set as an infinite value. The actually infeasible
solution will also be assigned an infinite value as fitness. The
algorithm A then selects promising solutions between P and
P ′ to form the new P . The framework will repeat the above
loop and terminate until running out of a given number of
actual simulations, i.e., calls of the engine’s computational
model.

Algorithm 1: Offline surrogate-assisted engine calibra-
tion framework

Input: A: meta-heuristic (e.g., EA)
Input: ĝ: classification surrogate model constructed

offline with a number of evaluated samples
1 P ← Sampling an initial set of solutions with LHS;
2 for Each solution x ∈ P do
3 Simulate x to get its actual evaluation f(x) and

feasibility g(x);
4 while stopping condition is not satisfied do
5 Sample a new set P ′ from P by A;
6 for Each x′ in P ′ do
7 quality =∞;
8 predictedFeasible = ĝ(x′); // Predict

the feasibility of x′

9 if predictedFeasible then
10 quality, isFeasible = f(x′), g(x′);

// Simulate x′ with the
actual computational model
of engine, return its
evaluation (quality) and
feasibility

11 Select promising solutions between P and P ′
according to their evaluations (quality values) to
form a new set P .

Output: Best solution in P

B. Online surrogate-assisted engine calibration framework

The online framework constructs a surrogate model before
the optimisation starts and updates it during the optimisation
progress. The samples generated during the optimisation are
collected as new training data for updating the surrogate
model. The online framework is described in Algorithm 2.

A number of initial solutions are sampled and forms P .
The actual simulator, i.e., an engine’s computational model,
evaluates them and returns the actual evaluation value and
actual feasibility of each solution. In this framework, we
maintain two archives to save all the evaluated solutions during
the optimisation, XP for saving feasible solutions and XN for
saving infeasible ones. An initial classification surrogate model
ĝ is then constructed using all the samples in X = XP ∪XN .
After that, the framework starts the main optimisation loop.
At each iteration, the algorithm A will generate a new set
P ′, the feasibility of each solution in which will be predicted
by the surrogate model ĝ. Determining whether a solution
should be actually evaluated or not is similar to the offline

framework. In addition, the evaluated solution will be added to
XP or XN according to its actual feasibility. If the predicted
feasibility of an evaluated solution is incorrect (i.e., false
positive), it will be recorded by a counter nFP . The number
of all solutions which are predicted to be feasible in P ′ (i.e.,
positive predictions) is also counted and denoted as nP . At the
end of each iteration, the surrogate model is re-constructed if
its precision is lower than a threshold ε. The algorithm A then
selects promising solutions between P and P ′ to form a new
P . Finally, the whole algorithm terminates after running out
of a given number of actual simulations.

During optimisation, we limit the size of XP and XN .
The oldest recorded samples will be removed if XP or XN
exceeds its capacity after adding newly evaluated samples. It
can not only limit the amount of training data to avoid super
long training time but also help the newly constructed model
focus more on the current search area by removing former
samples.

C. Discussion

Both the offline and online frameworks use a surrogate
model to pre-select the possibly feasible solutions, therefore
their performance highly depends on the model’s accuracy.
Since the offline framework only trains the model before
the optimisation process, it requires certain amount of offline
samples to obtain a surrogate model of high accuracy. In this
paper, 500 initial samples, including 250 feasible ones and
250 infeasible ones collected from the whole search space
are used for training an offline model. On the other hand,
the online framework re-constructs the surrogate model during
the optimisation process, which might also be computationally
expensive. Hence, our online framework uses two archives of
fixed size for saving training samples to bound the training
time. According to our empirical studies, it only costs 0.1680
seconds on average for training a neural network model on
our experimental platform (Windows10 with Intel Core i7-
8700CPU@3.2GHz), which is still cheaper than the average
time consumed to simulate a solution. Besides, we only re-
construct the prediction model when the true positive predic-
tion accuracy is lower than a threshold, which also helps save
computational resources by decreasing the frequency of re-
construction. The following section provides more details of
comparing the offline and online frameworks.

IV. EXPERIMENTS

In this paper, we implement two instantiations of the pro-
posed frameworks. The performance of the two instantiations
is also compared and analysed on calibrating a real aero-engine
described in [15].

A. Experimental setting

For the sake of simplicity, we applied a self-adaptive Particle
Swarm Optimisation (saPSO) algorithm which was also pro-
posed for the aero-engine calibration problem in our previous
work [15]. The parameter setting in saPSO is same as the
setting in [15]. The maximum number of fitness evaluations



Algorithm 2: Online surrogate-assisted engine calibra-
tion framework

Input: A: meta-heuristic (e.g., EA)
Input: ε: threshold of precision

1 P ← Sampling an initial set of solutions with LHS;
2 XP = ∅ // Archive for feasible samples
3 XN = ∅ // Archive for infeasible ones
4 for Each solution x ∈ P do
5 Simulate x to get its actual evaluation f(x) and

feasibility g(x);
6 if g(x) then
7 Save x to XP ;

8 else
9 Save x to XN ;

10 Train a classification surrogate model ĝ on XP ∪XN ;
11 while stopping condition is not satisfied do
12 Sample a new set P ′ from P by A;
13 nP = 0; // Count feasible predictions
14 nFP = 0; // Count false positives
15 for Each x′ in P ′ do
16 quality =∞;
17 predictedFeasible = ĝ(x′); // Predict

the feasibility of x′

18 if predictedFeasible then
19 quality, isFeasible = f(x′), g(x′);

// Simulate x′ by the
actual simulation process,
obtain its fitness and
feasibility

20 nP ++;
21 if isFeasible then
22 Save x′ to XP ;

23 else
24 Save x′ to XN ;
25 nFP ++;

26 Update X: X = XP ∪XN ;

27 if nP−nFP

nP
< ε then

28 Re-construct ĝ using updated X;

29 Select promising solutions between P and P ′
according to their evaluations (quality values) to
form a new set P .

Output: Best solution in P

is set as a relatively large value: 100d, where d is the
number of decision variables, i.e., number of parameters to
be calibrated, because we would like to investigate how much
the computational time will cost to reach the different cali-
bration requirements. The threshold for precision ε in online
framework set as 0.9 finally after parameter configuration by
ourselves. All the experiments are programmed in MATLAB
R2020b and executed on a Windows10 with Intel Core i7-
8700CPU@3.2GHz.

The two generated algorithm instances are abbreviated as
Off-saPSO and On-saPSO. Both employed a neural network,
using deep learning toolbox in MATLAB2, to construct the
surrogate model. The network in our experiments has one
hidden layer with 50 neurons, and the input layer has 27
neurons for inputting the 27 different aero-engine parameters,
and one neuron for the output layer to output the probability
of being feasible. Moreover, 500 samples are used to train
the surrogate model in the offline framework, including 250
feasible and 250 infeasible samples. In the online framework,
all the data in the archives are used as training data during the
optimisation process.

B. Influence of classification model on optimisation algorithm

TABLE I: Best solution (Mean ± Standard Deviation) and
the average time used by saPSO, Off-saPSO and On-saPSO
over 25 independent runs. The symbol in Off-saPSO/On-
saPSO represents the Off-saPSO/On-saPSO significantly win
(>) saPSO or no significant difference (≈).

Algorithm saPSO Off-saPSO On-saPSO

MEAN±STD (%) 0.3423±0.1268 0.3262±0.0848 (≈) 0.2990±0.1026 (≈)
TIME (s) 2,475 1,993 (>) 2,290 (≈)

TABLE II: Average and standard deviation of number of
actual simulations for reaching the different RSME require-
ments. The symbol in Off-saPSO/On-saPSO represents the
Off-saPSO/On-saPSO significantly win (>) saPSO or no sig-
nificant difference (≈).

RMSE saPSO Off-saPSO On-saPSO

3.0% 53±50 31±30 (>) 49±44 (≈)
2.5% 97±66 60±43 (>) 79±59 (≈)
2.0% 179±66 142±85 (>) 149±97 (≈)
1.5% 382±156 306±182 (>) 258±187 (>)
1.0% 807±295 696±340 (≈) 598±245 (>)
0.5% 1826±502 1711±470 (≈) 1597±465 (≈)

The results of three different algorithm instances on the
engine-calibration problem over 25 independent runs are pre-
sented in Table I. The first row represents the average mean
error and standard deviation, and the values in the second row
represent the average total time consumed by each algorithm
instance in the experiments. The signrank test with a 0.05
significance level is performed between saPSO and saPSO
with two proposed frameworks in terms of quality of obtained
solution (MEAN±STD) and the time used to obtain the final
best solution, respectively. ‘>’ denotes that Off-saPSO/On-
saPSO performs significantly better than saPSO and ‘≈’ refers
to no significant difference. Furthermore, we presented two
tables of the number of actual simulations used and running
time to reach different RSME requirements ({3.0%, 2.5%,
2.0%, 1.5%, 1.0%, 0.5%}). As shown in Table II, Off-saPSO

2patternnet function



reaches {3.0%, 2.5%, 2.0%, 1.5%} using the significantly
fewer number of actual simulations than saPSO does while
On-saPSO performs better than saPSO in reaching the require-
ments {1.5%, 1.0%}. In Table III, Off-saPSO reaches {3.0%,
2.5%, 2.0%, 1.5%} using significantly shorter time than saPSO
and On-saPSO is significantly faster than saPSO in reaching
{1.5%, 1.0%}. However, both Off-saPSO and On-saPSO per-
form similarly with saPSO in reaching requirements 0.5%. Our
proposed frameworks significantly increase the algorithm’s
efficiency and use much less time to obtain a similar result
than using the original algorithm without surrogate model in
reaching requirements greater than 0.5% in this aero-engine
calibration problem.

a) Convergence influence analysis: From the above
results, both the online and offline frameworks enhance the
performance of the original saPSO. These two frameworks
use a surrogate model to predict the feasibility of a new indi-
vidual. For the original optimisation algorithm, an infeasible
individual is required to be evaluated by an actual simulation
to determine its feasibility, which results into expensive cost
for each simulation. However, the proposed frameworks use
the surrogate model to pre-select feasible individuals. The
predicted infeasible individuals will be eliminated directly, and
the saved computational resources can be used for running
more generations of optimisation. On the other hand, an
infeasible individual’s fitness is usually inferior with a high
probability of this real-world problem. The surrogate model
also helps the algorithm eliminate the potential low-quality
individuals. Therefore, our proposed frameworks significantly
enhanced the original algorithm.
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Fig. 3: Dynamic change of surrogate model’s accuracy during
optimisation.

The Off-saPSO obtains a better performance in reaching a
higher RSME requirement and On-saPSO outperforms Off-
saPSO when the RSME requirement is lower. It indicates
that Off-saPSO convergences faster at the front stage of
optimisation but On-saPSO catches up at the latter stage

of optimisation (even though Off-saPSO uses less time in
reaching 0.5% RSME requirement, it has 4 seconds difference
on average and their performance is almost the same in terms
of the consumed time). The main reason is the change of
the accuracy of surrogate model in current search area. Fig.
3 shows the change of accuracy of the classification model
in Off-saPSO and On-saPSO during the optimisation process.
The accuracy is calculated on every 90 sampled individuals
(same as the population size) during the optimisation process.
The blue curve and red curve denote the offline and online
frameworks, respectively. The offline model maintains a high
accuracy since the beginning of optimisation stage, therefore
it uses less computational resource for an easily reached
RSME requirement. Therefore, Off-saPSO easily traps in
premature convergence. However, the online model’s relatively
low accuracy increases its search diversity and its increasing
accuracy helps it converge to a better result when it has more
computational resources.

On the other hand, according to our prior knowledge of
this aero-engine calibration problem [15], the neighbour area
around the global optimum is the feasible area. Therefore,
when the algorithm converges at the latter stage of optimisa-
tion, almost all individuals are feasible, making the surrogate
model’s efficacy decrease. As a result, when On-saPSO finds
a high-quality individual, which helps the algorithm quickly
converge to the better area, the surrogate model’s accuracy will
not influence the optimisation a lot. The RMSE requirement of
0.5% is too difficult for these algorithms within such limited
number of actual simulations to reach.

TABLE III: Average and standard deviation of running time
(second) for reaching the different RSME requirements.
The symbol in Off-saPSO/On-saPSO represents the Off-
saPSO/On-saPSO significantly win (>) saPSO or no signif-
icant difference (≈).

RMSE saPSO Off-saPSO On-saPSO

3.0% 48.88±45.98 22.4±22.12 (>) 42.84±40.60 (≈)
2.5% 87.00±58.03 45.16±32.70 (>) 68.84±51.65 (≈)
2.0% 154.60±53.30 105.08±61.95 (>) 127.00±77.64 (≈)
1.5% 307.72±118.68 225.16±131.13 (>) 209.16±141.91 (>)
1.0% 619.32±216.37 507.60±246.31 (≈) 459.92±182.32 (>)
0.5% 1540.52±788.80 1244.08±340.65 (≈) 1248.32±555.11 (≈)

b) Time influence analysis: The proposed frameworks
aim at reducing computational time for the constrained ex-
pensive problem. The construction of the surrogate model
is also a computationally expensive process to some extent.
Therefore, we analysed the time used in the experiments and
reported the average total time used by saPSO, Off-saPSO and
On-saPSO in Table I and Table III. Both frameworks reduce
the total running time for saPSO and the offline framework
reduces more time than the online one. The proposed frame-
works eliminate the potentially infeasible individuals, whose
evaluation time is much more than feasible individuals in
this problem. Assuming that saPSO evaluates p percents of
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Fig. 4: A decision tree for engine-calibration problem.

feasible individuals among all the evaluated individuals and
the surrogate model in Off-saPSO and On-saPSO eliminate
all infeasible individuals during optimisation, the total time
used by each algorithm excluding the time consumed by other
operations can be calculated as:

TsaPSO = 100d× p× tf + 100d× (1− p)tif
= 100d× [tf + (1− p)(tif − tf )]
= 100d× tf + 100d× (1− p)(tif − tf ),

Toff−saPSO = 100d× tf ,
Ton−saPSO = 100d× tf + Tm,

where tf and tif are the average time for evaluating a feasible
individual and an infeasible one, respectively, and tif > tf
in our problem. Tm denotes the time used for constructing
surrogate models in the online framework. Therefore, the Off-
saPSO should be the algorithm using the shortest time, which
is the same as our experimental results. For Tm, we recorded
that building a neural network surrogate model only consumed
0.1680 seconds on average. The average ratio of time for
constructing surrogate models accounted for 2.78% of total
running time in our experiments. Therefore, both offline and
online frameworks improved the algorithm’s efficiency when
solving this expensive constrained problem.

C. Surrogate-assisted problem analysis

Furthermore, in order to analyse the influence of each input
parameter on the aero-engine calibration problem, which is a
black-box problem for us, we re-trained a classification model
using the data generated during the optimisation process. As
the neural network is hard to analyse each input parameter’s
influence, we trained a decision tree as visualised in Fig.
4. We only draw three depths of the whole tree due to
the limited number of pages. According to Fig. 4, the third
input parameter, i.e. x3, is the most crucial parameter for
determining the feasibility of an individual. Then, x1, x6 and
x7 also play important roles in determining an individual to
be feasible or not. The different importance of parameters

detected in our experiments could potentially help engineers
calibrate a similar engine quickly in the future. Details of this
aero-engine and those input parameters are described in [15].

V. CONCLUSION

In this paper, we modelled a real aero-engine calibration
problem as an expensive optimisation problem with hidden
constraints aiming to adjust a series of parameters to ensure
the performance of an engine. Most of the existing approaches
cannot handle the hidden constraints, which only give a binary
value to indicate the feasibility. As the evaluation process is
time-consuming, we trained a classification-based surrogate
model to predict a solution’s feasibility. We proposed offline
and online frameworks combining the surrogate model with
optimisation algorithms to increase algorithms’ efficiency for
this calibration problem. The offline framework constructed
the prediction model before the optimisation process without
further updates. The online framework updated the surro-
gate model during the optimisation process once the current
model’s prediction for a solution was different from its actual
feasibility. In the empirical studies, we employed a self-
adaptive particle swarm optimisation algorithm to generate
two algorithm instances to solve the calibration problem.
The results showed that the surrogate assisted algorithms
significantly outperformed the original algorithm in terms of
the obtained best solution and the time used for optimisation.
Besides, the surrogate model also helped us analyse the
different importance of parameters’ influence on the feasibility.

In the future, it is valuable to reduce the problem’s di-
mensionality according to the analysis of the classification
model so that the optimisation algorithms can benefit from a
lower-dimensional problem. The online and offline framework
can also be used in an algorithm portfolio to reduce the
optimisation risk [24]. Furthermore, we will compare our
frameworks with other approaches for aero-engine calibration
problem, and it is also worthy to investigate how to transfer the
knowledge learnt on calibrated aero-engine models to calibrate
new engine models more efficiently.
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